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Abstract

Floating sensor buoy devices (FSBDs) are used mainly to gather data from

underwater and water surface to respond to naval as well as maritime industry

requests. Due to their complex access on the sea, the FSBDs are self powered.

Among the renewable energy options, wave energy converters (WECs) have many

advantages. One particular method to extract the consistently dense, sea wave

energy, is a via heaving buoy, equipped with an internal, inertial power take-off

(PTO), thereby acting as a point absorber.

A noted unresolved problem for this type of WEC, is large amplitude pitch/roll

motion. This has a two-fold negative effect on the FSBD system: (1) Reduction of

electrical energy from the WEC system (2) Deteriorated wireless sensor network

capability, due to misalignment of vertical antenna.

Parametric resonance can be the cause of very large amplitude, unstable,

pitch/roll motions in floating bodies. However, this nonlinear phenomenon, has

not previously been implemented in the literature for this type of WEC-FSBD.

The objective of this study is therefore to include the effect of parametric

resonance, when ensuring the vertical stability of a WEC-FSBD device.
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1 Introduction

1.1 Marine based sensors

1.1.1 Overview

Besides playing a key role in climate regulation, oceans provide us with natural re-

sources, recreation and a route for transport of goods and services. For these purposes,

marine monitoring has lately become a field of major interest and over the past fifteen

to twenty years, development of data gathering offshore buoys has been one of the top

challenges of marine-linked research.

Sensor buoys seem to be a promising alternative for sea surveillance. They offer a low

cost real time monitoring of the water physical and chemical parameters (see Table

1) and have various applications: water quality monitoring, ocean sensing, marine fish

farm or coral reef monitoring... Some of their main advantages are their easy deploy-

ment, flexibility and energy independence. They can provide data continuously by

cellular communication and Internet-based information sharing.

In practice, sensor buoys are usually deployed at sea in a large number, creating wireless

sensor networks (WSNs). The SEMAT (Smart Environmental Monitoring and Analysis

Technologies) have conducted researches on WSN deployment in marine environment,

collecting data on climate change, water quality and ecosystem health. One of the key

components of these WSNs is the data transmission system.

Table 1: Common oceanographic sensors
Measured Parameter Unit
Temperature °C, °F
Pressure mmHg
Salinity g/L
Water speed m/s
Chlorophyll µg/L
Dissolved oxygen mg/L
Nitrate mg/L
pH pKa
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1.1.2 Data transmission

1.1.2.1 Description of a single sensor node

A marine WSN is composed of several sensor buoys called nodes. Each node generally

comprises:

• Out-of-water part : includes an antenna for RF transmission, surface sensors and

occasionally an energy harvesting system to ensure self powering.

• Submerged part : composed of sensor strings, a sonde to relay data to the out-of-

water part, and a mooring device to maintain the FSBD on station.

• Internal part : consisting of electronics, such as a CPU, a power supply regulator,

an Analog/Digital converter to relay data to the antenna.

Fig.1.1 details the common features of a FSBD.

Figure 1.1: General scheme of a sensor node [1]
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1.1.2.2 General architecture of a Wireless Sensor Network

Within the network, inter-node communication is handled either point-to-point (exclu-

sive communication link between two systems) or multihop (at least 1 other station

exists in the path between the source and destination). Some particular nodes, called

sinks, communicate directly with the base station.

Figure 1.2: General structure of a Wireless Sensor Network [1]

1.1.3 Energy requirement

Historically, maintenance expeditions for MWSNs (Marine Wireless Sensor Networks)

have demanded costly trips to remote locations, to check the functioning of the nodes,

gather data and replace the batteries [8]. The ”wireless” quality of a MWSN would

allow us to continue integrating more sensors into our environments, but it is also

the most limiting technological lock: a lack of wired connection necessarily implies

energy autonomy, which is all the more problematic because wireless communication

causes overconsumption of energy [2]. Several research axes are trying to solve this

problem: improving manufacturing technologies and radio communication protocols to

reduce node consumption, developing energy reservoirs such as batteries or fuel cells to

increase their performance, or capturing ambient energy from the sensor environment

to power it.
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Figure 1.3: Choices for powering an autonomous node (a) wireline solution, (b) elec-
trochemical storage, (c) electrochemical storage + autonomy extension, (d) ambient
recovery only [2]

1.2 Wave Energy harvester buoy

1.2.1 A state-of-the-art review on wave energy harvesting

The first studies on alternative energy began shortly after the 1973 oil crisis. This

geopolitical crisis saw the first peak in the oil price and had now been followed by

several geopolitical as well as environmental crisis (see Fig.1.4). The use of renewable

energies, which do not emit greenhouse gases, is becoming an economic, technological

and political priority. Thus, for a number of years, all kinds of renewable energies have

emerged: solar energy, wind energy, hydropower, geothermal energy and wave energy.
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Figure 1.4: Non inflated oil price per barrel over the last 50 years (from macrotrends.net)

This source of energy actually originates from the wind. When wind blows near the

ocean, part of the released energy is transmitted to the sea, creating waves that are all

the greater as the wind is strong and over a long period of time. In addition to being

free and renewable, this energy also has the advantage of being efficiently transmitted

to the coast, even over distances of several thousand kilometres. Fig.1.5 illustrates the

enormous potential that wave energy harvesting represents.

Figure 1.5: Global annual mean wave power estimates in kW/m [3]
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In this section are presented some of the most important milestones in the devel-

opment of wave energy conversion. Some of the solutions cited below are currently

commercialized and offer perspectives on the modelling of our considered system.

– Salter’s duck: The Salters duck, designed in the 1970s, is the first example of

wave powering. Its principle is to use watertight boxes of asymmetrical shape

rotating around an axis by operating hydraulic pumps. This principle has en-

countered many technological difficulties, particularly related to the holding of a

long axis in the face of waves. Salter’s duck remains today the pioneer of wave

powering systems.

Figure 1.6: Salter’s duck [4]

– Power Buoy (Ocean Power Technologies, Inc., USA): This submerged

buoy has a fixed part with tensioned anchor and an other part oscillating to

the rhythm of the swell. The relative movement is dampened to be converted

into electricity. This system, whose natural frequency makes its performance

very sensitive to the wave period, requires specific control to maximize energy

extraction, including predictive behaviour. The conversion device consists of a

hydraulic pump, accumulator and motor driving an electric generator. Versions

with direct linear electromagnetic generator are also being studied. Over a 20,000

m2 area, 40 250 kW buoys would allow the installation of a 10 MW production

capacity.
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Figure 1.7: Principle of operation of the PowerBuoy [5]

– Archimedes Wave Swing (AWS, Netherlands)[12]: The pilot version, tested

in 2004 off the coasts of Portugal, has a nominal power of 1 MW (cycle average)

and a peak power of 2 MW. A cylindrical float is oscillated by the waves and

compresses the air trapped between itself and a cylinder anchored at the bottom.

It drives the moving part of a direct linear synchronous magnet generator. Thanks

to an electronic power converter and appropriate control, the system makes it

possible to exploit wave periods of between 9 and 20 seconds in an optimal way.

The commercial version is planned with a diameter of 12 m, a maximum stroke

of 12 m and an average power of 4.75 MW.

Figure 1.8: Archimedes Wave Spring principle and design [6]
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– Searev (a project led by the Ecole Centrale de Nantes) : The Searev

concept consists of a completely closed float inside which a pendulum weight

is oscillating from the indirect stresses of the swell. In the prototype version,

hydraulic cylinders dampen the pendulum and charge the accumulators. A real-

time mechanical control, controlled by on-board computer technology, maintains

the pendulum system in a state of parametric resonance despite the irregular

nature of the excitation due to the waves. Hydraulic motors drive asynchronous

generators with a maximum power of 500 kW. An all-electric solution with direct

drive is also under study [13].

Figure 1.9: Principle of the SEAREV [7]
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1.2.2 Proposed system

The proposed system (see Fig.1.10) is a cylindrical buoy powered by a linear inertial

permanent magnet linear generator acting as a Power Take Off (PTO) mechanism. The

PTO is made of a translator containing permanent magnets and a stator containing

coils of wire. Upon action of the swell, the translator’s mass will react to the heave

motion of the buoy and will generate power.

Figure 1.10: Scheme of the cylindrical buoy [8]

To ensure the verticality of the buoy in the water, it is equipped with a ballast mass

on its bottom part. The choice of a cylindrical shape was made for simplification of

calculation and reduction of computational time during simulations.

1.2.3 The problem with pitch instability

Power is extracted from the relative motion of the buoy and the magnets in the transla-

tor. The heave motion of the buoy is therefore the one that generates the most energy

and is the one sought for. But in practice, parametric resonance induced by the sea

swell converts a large part of the buoy’s heave motion into pitch motion. This lowers

the PTO efficiency while making the buoy and its antenna unstable, leading to poor or

18



even interrupted communication quality and data losses.

A solution to the issue of data losses was proposed in [14], using a retransmission

mechanism based on mass storage and time division multiplexing, where the Buoy’s

communication terminal stores the real-time data that it transmits and can in the case

of data losses, automatically or on-demand transmit the lost data to the base station.

1.3 Outline, objectives of the project

As discussed in section 1.2.3, the main practical issue in using a wave powered sensor

buoy is the unwanted pitch motion caused by parametric resonance. It is a two-fold

problem, reducing the power capture of the wave energy harvester and detrimentally

affecting the data transmission of the wireless sensor node due to antenna misalignment.

Previous research [8] was based upon linear numerical models, enabling frequency do-

main analysis and design optimization. However, parametric resonance causing the

pitch motion is unable to be captured by linear modelling techniques.

The objective of this research will therefore be to extend the linear modelling and

analysis performed in the previous research into a nonlinear framework capable of in-

cluding the effects of parametric resonance.
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2 An insight on Resonance and Parametric Reso-

nance

This chapter covers some resonance phenomena occurring in oscillating systems and

aims at providing an insight on parametric resonance, from the conditions of occurrence

to direct applications.

2.1 Forced oscillations: linear and nonlinear cases

When an oscillator is excited by an external influence represented by a periodic time

function in its differential equation of motion, its oscillations are called forced. For a

linear mass-spring damper system, such differential equation can be written:

mẍ+ bẋ+ kx = Focos(ωt) (2.1)

Where:

– m is the mass

– b the linear damping coefficient

– k the linear stiffness coefficient of the system

– Fo the amplitude of the periodic influence

– ω its pulsation

The general solution of such equation is composed of a homogenous xh(t) and a partic-

ular xp(t) solution, written as:

x(t) = C1e
(− b

2m
+
√

( b
2m

)2− k
m
)t + C2e

(− b
2m
−
√

( b
2m

)2− k
m
)t︸ ︷︷ ︸

xh(t)

+Xcos(ωt− θ)︸ ︷︷ ︸
xp(t)

(2.2)

Or:

x(t) = C1e
(−λ+

√
λ2−1)ωnt + C2e

(−λ−
√
λ2−1)ωnt +Xcos(ωt− θ) (2.3)

Where:

– C1 and C2 are determined for initial conditions
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– X is the amplitude of the response:

X =
Fo√

(k −mω2)2 + b2ω2
(2.4)

– θ is the phase angle:

θ = arctan

(
bω

k −mω2

)
(2.5)

– 2λ = b
m

is the damping coefficient

– ωn =
√

k
m
− 2λ2 is the resonance pulsation

A resonance phenomenon is observed when w approaches wn. Fig.2.1 illustrates the

response of such system.

Figure 2.1: Resonance in a harmonically excited oscillator [9]

The frequency response of an oscillator is greatly altered when nonlinear phenomena

are taken into consideration.

Consider a mass-spring damper system, with linear damping and a nonlinear cubic
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stiffness k′. Its differential equation of motion can be written as:

mẍ+ bẋ+ kx+ k′x3 = Focos(ωt) (2.6)

Such equation is called a Duffing equation [15]. By means of convenience, Eq.(2.6) is

often re-written as follows [10]:

mÿ + 2ξẏ + y + αy3 = cos(Ωτ) (2.7)

Where:

y =
x

x0

α =
k′x20
k

ξ =
b

2mω0

(2.8)

ω0 =

√
k

m

τ = ω0t

Ω =
ω

ω0

With the displacement x0 = F0

k
(k′ = 0, ω = 0). The term α represents the ratio of the

force due to the nonlinear stiffness, to the force due to the linear stiffness at x0. Plus,

when the amplitude of the force increases, α increases and y decreases. Changes in the

value of α can therefore represent changes in the degree of non linearity of changes in

the amplitude of the excitation force.

For such system, the resonance frequency shifts down if k′ < 0 (softening system) and

shifts up if k′ > 0 (hardening system) compared to the linear case where k′=0. An

increase in the amplitude of excitation tends to bend the response curve away from the

linear case. Fig.2.2 illustrates the response of a Duffing oscillator. The dashed lines

represent unstable solutions, characterised by a jump-up or a jump-down of frequency

that occur when ω is slowly decreased or increased.

In most cases, nonlinear systems represented by equations such as the Duffing equation

do not admit exact solutions. Numerical methods, such as the Homotopy Analysis

Method ([16], [17]), the Differential Transform Method [18] or the Runge-Kutta Method

[19] can be used to obtain approximated solutions.
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Figure 2.2: Frequency response curve for the Duffing oscillator [10]

2.2 Parametric resonance

2.2.1 Outline

Some oscillating systems are characterized by a periodic variation of one or several of

their parameters. Such systems are described by differential equations in which time-

varying coefficients appear, and are called parametrically excited systems. Situations

occur where such systems become unstable, the periodic modulation of some parameter

increasing steadily and causing a resonant increase in the amplitude of oscillation, with

final state depending on the level of damping of the system. Such phenomenon is called

a parametric resonance.

Parametric resonance phenomena occur in many systems, from the well known elastic

pendulum [20] to motorcycles [21]. In the second half of the 19th century, Froude was the

first to study parametric resonance on ships ([22], [23]), observing large roll oscillations

in cases where the frequency of oscillation in heave and pitch was approximately twice

the natural roll frequency of the ship. In the 20th century, marine researchers studied
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more this phenomenon ([24], [25], [26]) and it later became a major field of research

after the severe damage and losses on the APL China container ship in 1998 (see 2.2.3

and [27]).

In more recent years and coupled with the development of more efficient numerical

techniques, parametric resonance applied to WECs has been the subject of many studies

([28], [29], [30], [31]).

2.2.2 Mathematical and Empirical conditions

Conditions supporting the apparition of parametric resonance have first been observed

empirically [22]. The causes of parametric resonance and its behaviour differ greatly

from those appearing in forced oscillations. For instance, parametric resonance can

occur without any external force exciting the system. In the case of ship roll motion,

parametric resonance may be triggered when some of the following conditions are met:

1. The period of the encounter wave is approximately equal to half the roll natural

period

2. The wave length and ship length are approximately equal

3. The ship’s roll damping is low

In general, parametric resonance is considered to be most triggered and of highest re-

sponse when the frequency of parametric modulation is twice the natural frequency of

the system (condition 1). In the model presented in Sect. 5 and 6, this condition will

be the one taken into considerations.

It is to be noted that in damped systems, a treshold value of the amplitude of modu-

lation of the parameter must be exceeded for parametric resonance to appear.

Parametrically excited systems are often described via the Mathieu equation([32],

[33]). Such equation can be written as:

mẍ+ bẋ+ k(t)x = 0 (2.9)

Or after dividing by the mass:

ẍ+ γẋ+ (ω2
n + βcos(ωt))x = 0 (2.10)

Where:
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– m and b are the mass of the system and a damping parameter (b constant and

positive)

– k(t) = k + acos(ωt) is a time-varying harmonic restoring coefficient. k, a and ω

are constant and positive

–

γ =
b

m
= 2ξωn and β = ω2

n

(a
k

)
(2.11)

With ωn the natural frequency of the system and ξ the damping ratio

One more convenient formulation is obtained with the change of variable τ = ωt:

d2x

d2τ
+ κ

dx

dτ
+ (δ + εcos(τ))x = 0 (2.12)

Where:

κ = 2ξ
(ωn
ω

)
ε =

β

ω2
(2.13)

δ =
(ωn
ω

)2
The Mathieu equation can have stable or unstable solutions, depending on the value of

κ, ε and δ. Fig.2.3 shows the stability chart of the Mathieu equation (called Strutt-Ince

diagram, see [34]) for κ=0, 0.1 and 0.2. It is to be noted that for κ < 0 the solution is

always unstable.
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Figure 2.3: Mathieu stability chart for κ=0, 0.1, 0.2. Regions denoted S and U are
respectively regions of stable and unstable solutions

2.2.3 Parametric resonance in marine structures: container ships accidents

In October 1998, the container ship APL China was on its way from Kaohsiung to

Seattle when it was caught in a severe storm in the North Pacific. He was subjected to

the storm for about 12 hours. The captain reduced speed and tried to steer in an ever

heavier sea from the starboard bow. The watch officers later testified of sea conditions

reaching the bridge (about 30 metres). The extreme bays collapsed and then those in

the middle (there was a deck load of 1,300 containers). But according to experienced

officers, what had most affected them were the sudden movements of the ship at the

worst of the storm. Swings of 30° to 40° made handling impossible, the overspeed of

the main engine associated with heavy ballast strikes reflected high pitch amplitudes.

The roll heel occurring during extreme pitch reached angles of 40°.
The captain later stated that the ship was completely out of control at the worst

of the storm. The morning after that, the damage was assessed: 400 of the 1,300

containers on the deck were drifting, 400 others had sustained extensive damage, and

several were hanging along the ship’s walls held by their seizure devices. Upon ar-

rival at the port of Seattle, insurers and their experts estimated the amount of damage

at $100 million. This was the highest amount of compensation paid for a container ship.

26



Figure 2.4: Damages on the containeurs. On the left, the APL China, on the right, the
Dirch Maersk.

In January 2002, the container ship Dirch Maersk suffered similar damage during a

crossing of the North Atlantic, followed by other vessels (OOCL America, P&O Ned-

loyd) in recent years. All captains report in their sea reports on the violence and

unusual amplitude of the ship’s movements.
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3 1 Degree of Freedom analytical model

3.1 Framing

3.1.1 Hypothesis, notations

The considered system is a floating cylinder linked to a PTO device generating energy

from the cylinder motion. The water is supposed to have infinite depth under the

cylinder. We only consider heave motion for this first model. The buoy is described

in a frame R0(0, x, y, z) and has a displacement ξ over the z axis. The origin of R0 is

given by the hydrostatic equilibrium of the buoy.

3.1.2 Equation of motion

We assume the fluid to be inviscid and the incident flow to be irrotational and in-

compressible [35]. The general displacement of the body ξ(z, t) from its hydrostatic

equilibrium position is given by Newton’s second law:

mξ̈(t) = Fg −
∫ ∫

S(t)

P (t)ndS + FPTO (3.1)

Where:

– m is the total mass of the body

– Fg = −mgz represents the gravity force with g the acceleration of gravity

– S is the submerged surface

– P is the pressure

– n = (nx, ny, nz) is a vector normal to the surface

– FPTO represents the power take-off forces

3.2 Modelling the fluid forces

3.2.1 Theoretical background

The torsor of hydrodynamic forces generated by the presence of the body in the water is

the sum of the pressures expressed in the reference frame R0, by means of the Bernoulli
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equation:

P (t) = −γgz(t)− γ ∂φ(t)

∂t
− γ |∇φ(t)|2

2
(3.2)

Where:

– φ(t) = φI + φD + φR is the potential flow

– φI , φD, φR are respectively the incident flow, diffraction and radiation potentials

From equation (2) and the definition of the potential flow, we can identify different

forces acting on the body:

– Excitation forces: The disturbances due to the presence of the body on the

incident wave field are neglected. This implies retaining in the exciting forces

only the components due to the deformation of the undisturbed free surface and

the incident flow potential. This approximation defines Froude-Krylov efforts.

The formulation of Froude-Krylov efforts reveals two terms. The first, corre-

sponding to the torsor of the hydrostatic eorts is obtained by integrating the

hydrostatic pressure on the instantaneous wet surface. Thereafter we also con-

sider that it contains gravity forces. The second highlights the dynamic pressure

of the incident field, which is also applied to the instantaneous wetted surface of

the body. Therefore the following forces are considered:

– FFKst is the static Froude-Krylov force:

FFKst = Fg +

∫ ∫
S(t)

−γndS (3.3)

– FFKdy
is the dynamic Froude-Krylov force:

FFKdy
= −

∫ ∫
S(t)

PdyndS (3.4)

where Pdy = −γ ∂φI(t)
∂t
− γ |∇φI(t)|

2

2
is the dynamic pressure

– FD is the diffraction force:

FD = −
∫ ∫

S(t)

PDndS (3.5)

where PD = −γ ∂φD(t)
∂t
− γ |∇φD(t)|2

2
is the diffraction pressure
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– FR is the radiation force:

FR = −
∫ ∫

S(t)

PRndS (3.6)

where PR = −γ ∂φR(t)
∂t
− γ |∇φR(t)|2

2
is the radiation pressure

Combining these equations, we can rewrite the equation of motion of the buoy:

mξ̈ = FFKst + FFKdy
+ FD + FR + FPTO (3.7)

3.2.2 Modelling approaches

The waves are considered to be linear and the quadratic terms of the potential equation

neglected.

For wavelengths much larger than the dimensions of the buoy, nonlinearites of Diffrac-

tion and Radiation can be neglected ([36] and [37]). When both nonlinear Froude-

Krylov and Radiation/Diffraction forces are implemented on a heaving point absorber

[38], the dynamic response of the device shows that the effect of Diffraction and Radi-

ation nonlinearities is negligible in comparison to the Froude-Krylov forces.

Only two modelling approaches are therefore considered: one with Froude-Krylov forces

linearised and one taking into account their nonlinearity.

3.2.2.1 Linear Froude-Krylov

For waves of small steepness and amplitude, the flow potential is linearised [35]. Hy-

drodynamic forces are integrated over the mean wetted surface of the buoy SM . The

equation of motion becomes:

mξ̈ = −kHξ︸ ︷︷ ︸
FFKst

−
∫ +∞

−∞
kEx(t− τ)η(τ)dτ︸ ︷︷ ︸
FEx=FFKdy

+FD

−µ∞ξ̈ −
∫ +∞

−∞
kR(t− τ)ξ̇(τ)dτ︸ ︷︷ ︸
FR

−CPTOξ̇︸ ︷︷ ︸
FPTO

(3.8)

Where [39]:

– FFKst = −kHξ : acts like a mass-spring system, with an hydrostatic stiffness kH .
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Static Froude-Krylov forces represent both gravity and Archimedes forces acting

one against the other on the device.

– FEx = −
∫ +∞
−∞ kEx(t − τ)η(τ)dτ : represents both dynamic Froude-Krylov and

diffraction forces. kEx is the excitation impulse-response function (IRF). The

excitation force is calculated using the convolution product between kEx and the

free-surface elevation η.

– FR = −µ∞ξ̈ −
∫ +∞
−∞ kR(t − τ)ξ̇(τ)dτ : is expressed by the added mass µ∞ and

the convolution between the radiation IRF kR and the velocity ξ̇, using Cummins

decomposition [40].

– FPTO = −CPTOξ̇ : is modelled as a linear damper using a fixed damping coeffi-

cient CPTO.

3.2.2.2 Nonlinear Froude-Krylov

In this section, Froude-Krylov forces are computed by integration over the instantaneous

wetted surface. The wetted surface is re-defined at each time-step and its calculation

is much more computationally expensive but is expected to give finer results since the

nonlinearities of Froude-Krylov forces should play a major role in the motion of the

buoy.

Using this new model, the equation of motion can be re-written as:

mξ̈ = Fg−
∫ ∫

S(t)

(Pst+Pdyn)ndS−
∫ +∞

−∞
kD(t−τ)ηdτ−µ∞ξ̈−

∫ +∞

−∞
kR(t−τ)ξ̇(τ)dτ−CPTOξ̇

(3.9)

Where:

– Froude-Krylov forces are integrated over the instantaneous wetted surface.

– The diffraction force is calculated using the convolution product between kD and

the free-surface elevation η.

– The radiation force and power-take off force are calculated the same way as in

the linear approach.
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3.2.3 Algebraic integration of the Froude-Krylov forces

In this section, a computationally efficient algebraic integration of the Froude-Krylov

forces is operated. Such method is valid for vertical axisymmetric buoys (when the

body is pitching, numerical integration will be necessary).

The geometry of a buoy symmetric around a vertical axis, in cylindrical coordinates, is

described as following: 
x(σ, θ) = f(σ) cos θ

y(σ, θ) = f(σ) sin θ

z(σ, θ) = σ

θε[0, 2π] ∧ σε[σ1, σ2]

(3.10)

Figure 3.1: Axisymmetric vertical device with generic prole of revolution f(σ), at rest
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Figure 3.2: Axisymmetric vertical device showing the free surface elevation η and the
displacement zd

In cylindrical coordinates, the Froude-Krylov forces become:

FFKst = Fg +

∫ ∫
S(t)

−γzndS = Fg +

∫ θ2

θ1

∫ σ2

σ1

−γz(σ, θ)(eσ × eθ)dσdθ

FFKdy
=

∫ ∫
S(t)

pdyndS =

∫ θ2

θ1

∫ σ2

σ1

pdy(σ, θ)(eσ × eθ)dσdθ

The cross product of the unity vectors, as well as the cross product for the torques,

can be expressed as following:

eσ × eθ =

f ′(σ) cos θ

f ′(σ) sin θ

1

×
−f(σ) sin θ

f(σ) cos θ

0

 = f(σ)

− cos θ

− sin θ

f ′(σ)



r × (eσ × eθ) =

f(σ) cos θ

f(σ) sin θ

σ

× f(σ)

− cos θ

− sin θ

f ′(σ)


σ2 is set constant and equal to the free surface elevation of the buoy η̄ at its axis.
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This approximation is valid for horizontal dimensions of the buoy much shorter than

the wave lengths. Considering that the buoy is deployed in deep-water location, the

pressure formulation can also be assumed as in infinite water-depth.
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4 Numerical techniques for 2 Degrees of Freedom

4.1 Objectives

Unlike well developed WEC devices such as the Archimedes Wave Swing which can be

tested full scale, new concepts need to be undergoing numerical efficiency evaluation so

that the designers can assess their viability in realistic wave conditions before investing

a lot of time, effort and money into development.

Historically such evaluations have been conducted via frequency-domain models of the

floating body response [37]. In the case of a single heave motion, the frequency domain

analysis gives results sufficiently correlated to experimental measurements [41], whereas

the correlation is poorer when surge and pitch are considered [42] [43]. This is mostly

due to the fact that linear models consider small wave amplitude and body motion,

while a pitching WEC usually requires its response to be resonant with the incoming

waves, resulting in large amplitudes of motion to maximize the energy harvesting. A

fully linear model can therefore be obsolete for such devices and other models have to

be investigated.

4.2 A review of numerical techniques

This section reviews some of the most well known and used numerical techniques to

model and control complex, partially of fully non-linear systems.

4.2.1 Boundary Element Method

The finite boundary element method (BEM) is a numerical technique developed since

the early 1960s and based on the older theory of boundary integral equations. This the-

ory dates back to the early 19th century with the works of Poisson (1820), Betti (1872)

and Kirchhoff (1882) among others. It was only around 1960 that Jawson, Hess, Symm

and others developed the finite element boundary method, the name BEM only ap-

pearing for the first time in the literature in 1977 [44]. BEM has since been the subject

of numerous publications ([45], [46]) and still represents an important area of research,

thanks in particular to the increasing power of the computers available. Particularly,

the computational efficiency of this method compared to smoothed-particle hydrody-

namics (SPH) or computational fluid dynamics (CFD) simulation methods makes BEM

a widely preferred choice in early stage device development.

BEM is based on the potential theory. When a harmonic linear wave field encounters
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a body, a scattering and a radiating velocity potentials arise [47]. BEM solves these

potentials individually:

– The scattering potential is solved assuming that the waves encounter a fixed body.

From this we can derive the exciting force FEx acting on the body.

– The radiating potential on the other hand is solved assuming a moving body in

the absence of incident waves. Solving this allows to obtain the radiation force FR

containing the added mass µ∞ and radiation damping coefficient kR (see Eq.8)

This method has emerged as an alternative to the other major numerical method: the

FEM (finite element method). BEM appears more appropriate in infinite space than

FEM since only the surface of the boundary of the domain must be discretized.

4.2.2 Gain Scheduling

Gain scheduling is a powerful and widely used design methodology for engineering

applications. It has particularly proven to be a successful method for the control of

nonlinear systems ([48], [49]). This method exploits linear, well understood design

control methods to describe and control the nonlinearities of a system, making it an

interesting and efficient tool for many designers.

A linear structure of parametric variations (the interpolation of the nonlinearities of

the system) forms what is called a Time-Varying Parameter (TVP) model [50]. Several

operating points covering the range of the system’s dynamic (heave and pitch motion

in the present study) are selected. From each of these points is derived a Linear Time-

Invariant (LTI) approximation on which a linear compensator is applied. The gains of

the compensator are then interpolated (scheduled) in between the operating points to

form a global compensator [48]. Fig.4.1 shows how a gain scheduled control is operated

in a block diagram view.

Figure 4.1: Block diagram of a system controlled by gain scheduling (from [11])
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Gain scheduling originated in the development of flight control systems. The mach-

number and the dynamic pressure were used as scheduling variables.

4.3 Application to the proposed model

In this study, BEM was chosen for the calculation of hydrodynamic coefficients. The

NEMOH toolbox (see Sect 5.2) was adapted and used for this matter, in the MatLab

environment. Calculations being computationally demanding, the coefficients were pre-

calculated on a chosen range of positions of draught and pitch. Results of calculations

for each pitch and draught position (including Excitation force, Restoring coefficient and

Impulse Response Functions of added mass) were then separately saved and stored, to

be loaded into look-up tables, allowing to interpolate the hydrodynamic data between

these positions (see Sect. 5.3) and creating a time-varying parameter control model via

Simulink.
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5 2 DoFs numerical model: code and computation

5.1 Overview

In this section a description of the numerical model is presented. The geometry of the

body, its considered motion and the modelled waves are discussed.

A cylindrical body is considered to be moving in heave and pitch in water. The PTO is

not modelled here for simplification purposes. All calculations are done in the MatLab

environment. Fig.18 shows the scheme of the cylinder.

The characteristics of the cylinder are the following:

– R = 0.35m : Radius of the cylinder

– H : Draught of the cylinder. The calculations are only done for the immersed

part of the body. H, as well as the Pitch angle are varying parameter and the

hydrodynamic coefficients are computed for a whole range of H and Pitch values.

– Distribution of mass : The Center of Mass (CoMz) is considered to be on

the vertical axis of revolution, at h = 0.75m above the bottom of the cylinder.

The mass is distributed in a full cylinder of height 2h with CoMz at its center.

Therefore:

m = πR2Hρ is the mass of the body

I55 =
m

12
(3R2 + (2h)2) is the moment of inertia of the body on the Y axis
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Figure 5.1: Mass distribution in the considered cylinder

The incoming waves are modelled as sinusoidal waves with parameters of amplitude

and frequency which can be set for different calculations.

A mesh of the cylinder was created for the following range of positions:

– Draught position of -0.2m to -4.0m, with -0.2m increment

– Pitch position of -40°to +40°, with 10°increment

5.2 Obtaining hydrodynamic coefficients with the NEMOH

toolbox

NEMOH is a BEM code designed for the calculation of first-order hydrodynamic co-

efficients. It has been developped at Ecole Centrale de Nantes (France) for 30 years.

It was the first open source BEM code and is still used in many research projects. Its

common use is to evaluate the dynamic response of floating structures or to evaluate

the performance of wave energy converters [47].

The approach for obtaining hydrodynamic coefficients of a given geometry is threefold:

1. Pre− processor: Reads and prepares the mesh and calculation cases (sets of

body conditions).

39



2. Solver: For each body condition, solves the Boundary Value Problem (BVP)

of the potential. Calculates pressure field, hydrodynamic coefficients, far field

coefficients and wave elevation.

3. Post− processor: Post-processes results, used to calculate Response Amplitude

Operators (RAOs) and to plot the free surface wave elevation.

5.2.1 Pre-processor

5.2.1.1 Mesh generation

The aim of the pre-processor is to prepare the mesh and to generate the body con-

ditions for each calculation case (radiation and diffraction). The inputs include body

conditions (geometry of the mesh, number of panels of the mesh, number of DoFs to

be analysed) and environmental values (water density, wave direction and frequency).

NEMOH can generate meshes through two MatLab functions, axiMesh.m and Mesh.m,

respectively used for axisymmetric and non-axisymmetric geometries. The meshes are

composed of flat quadrilateral panels, as shown in Fig.5.2. For generating an axisym-

metric mesh, only a few points of the contour of the geometry are necessary.

Figure 5.2: Discretised mesh for 2.6m draught and 0°pitch angle

Apart from the mesh characteristics, the pre-processor gives some other outputs

used in the solver, among which:
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– Normal velocities, i.e the body conditions for each radiation and diffraction prob-

lem

– Froude-Krylov forces for each diffraction problem

– Coordinate of the free surface, to calculate the wave elevation

5.2.1.2 Rotating the Mesh

From the axiMesh.m function was computed axiMeshRotate.m, which allows to gener-

ate meshes for pitched models, by rotating the points of contour of the original geometry.

Consider the buoy being rotated (pitched) by an angle β in regards to its Center of

Mass C. The buoy is described in a reference frame R0(0, X0, Y0, Z0). Coordinates of C

are (XC , 0, ZC). A point M(XM , 0, ZM) on the surface of the buoy will be transformed

into N as following (see Fig.5.3 also):{
XM −XC = Rcosα

ZM − ZC = Rsinα

{
XN −XC = Rcos(α + β) = R(cosαcosβ − sinαsinβ)

ZN − ZC = Rsin(α + β) = R(sinαcosβ + sinβcosα)


XN = XC + (XM −XC)cosβ − (ZM − ZC)sinβ

ZN = ZC + (ZM − ZC)cosβ + (XM −XC)sinβ

(5.1)

We can therefore write the coordinates of a node i of the mesh for a pitch angle β

ηβi (Xβ
i , Yi, Z

β
i ), in regards to the same node at β = 0°:

Xβ
i = XC + (X0

i −XC)cosβ − (Z0
i − ZC)sinβ

Yi

Zβ
i = ZC + (Z0

i − ZC)cosβ + (X0
i −XC)sinβ

 (5.2)
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Figure 5.3: Rotation of angle β of the point M in regards to point C in R0

Fig.5.4 shows the discretised mesh rotated by 20°, generated with axiMeshRotate.m,

and cut above the still water level.

Figure 5.4: Discretised mesh for 2.6m draught and 20°pitch angle
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5.2.2 Solver and post-processor

The solver and the post-processor respectively solve the linear BVP of each body con-

dition for radiation and diffraction problems, and postprocess the results in terms of

relevant quantities, such as added mass, radiation damping or excitation force.

After post-processing is done, the following results are given:

– Radiation coefficients, containing added mass and damping forces from the radi-

ation problems

– Diffraction forces and Excitation forces from the diffraction problems

– Impulse Response Functions for the radiation force and infinite frequency added

mass minf

5.3 Body response model

5.3.1 Outline: MatLab code, loading results from NEMOH

The body response model was computed on a model run MatLab function. The full

code is displayed on Appendix.

Inputs of the model include the cylinder description (radius, mass, inertia), initial con-

ditions of position and description of the incoming waves: shape, amplitude, frequency.

The code then loops through all considered positions and loads for each position the

following calculation results from NEMOH:

– Excite.mat: These are the excitation force coefficients Fe, stored in a 300*6 ma-

trix because NEMOH calculates excitation coefficients for 6 degrees of freedom.

Since only Heave and Pitch motions are considered in the current study, Fe co-

efficients are separated into Fe3 and Fe5, respectively columns 3 and 5 of the Fe

matrix

– w.mat: Corresponding frequencies for the excitation coefficients (300*1 list)

– KH.mat: 6*6 matrix corresponding to the restoring coefficients calculated by

NEMOH. From this, two matrixes KH3 and KH5 are created, corresponding

respectively to the heave and pitch restoring coefficients, as 20*9 matrixes for 20

heave positions and 9 pitch positions

– IRF.mat: Gives the results the Impulse Response Function of added mass for

heave and pitch, stored separately as single values minfHeave and minfP itch
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– Heave Rad SS.mat, Pitch Rad SS.mat: These are the State-Space parameters

for the equilibrium position (zero heave, zero pitch)

As said in Sect. 4.3, The results of NEMOH calculations are interpolated between

the considered range of positions. To do so, results of Excitation force, Restoring force

and added mass were stored into lookup tables. For the coefficients of Radiation force,

a State-Space model could be used, because of the linear approach of Radiation, as

discussed in Sect. 3.2.2.

5.3.2 SIMULINK model detailed

5.3.2.1 Overall system

The skeleton of the SIMULINK model is described in Fig.5.5. It is composed of 4

subsystems, corresponding to Excitation and Restoring forces, Inertia (added mass)

and the State-Space model for Damping coefficients.

Figure 5.5: SIMULINK model skeleton
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5.3.2.2 Subsystems containing lookup tables

Fig.5.6 to 5.8 describe the subsystems where lookup tables were used for interpolation

of the NEMOH calculations. Details on the inputs of these lookup tables can be found

in the MatLab code in Appendix.

Excitation Force

Figure 5.6: Excitation subsystem

Restoring force

Figure 5.7: Restoring subsystem
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Inertia

Figure 5.8: Inertia subsystem

5.3.2.3 State-Space model for the damping coefficient

The State-Space model was implemented by usingHeave Rad SS.mat and Pitch Rad SS.mat,

containing the State-Space parameters Ass3, Bss3, Css3 and Dss3 for heave damping, and

Ass5, Bss5, Css5 and Dss5 for pitch damping. Fig.5.9 describes this model.

The Finite Order Approximation by Moment-Matching (FOAMM) method was used

to obtain the coefficients. Theory on this method and a toolbox can be found in [51]

and [52].

Figure 5.9: Damping subsystem
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6 Results, discussions

In this section, results of the simulations operated with the model run code are pre-

sented and discussed. As parametric resonance phenonema were looked for, the system

entered states of very high amplitude of motion and some of the solutions diverge.

Efforts were made to discuss the range and limits of the presented model.

6.1 Free decay test

Free decay tests were first operated in order to determine the natural heave and pith

frequencies of the body. In these tests the cylinder is ”released” from an initial position

of draught or pitch, with no incoming wave and its oscillations are studied. Results of

heave decay and pitch decay tests are shown in Fig.6.1 and 6.2.
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Figure 6.1: Heave decay test with initial position=0.5m
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Figure 6.2: Pitch decay test with initial position=40°
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From these results could be determined the natural heave and pitch periods of the

cylinder. Corresponding frequencies are the following:

fnH = 0.346Hz natural heave frequency

fnP = 0.375Hz natural pitch frequency

6.2 Highlighting Parametric Resonance

6.2.1 Method

As discussed in Sect. 2.2.2, parametric resonance phenomena are most triggered when

the frequency of parametric modulation (here, the incoming waves) is twice the natural

frequency of the system.

The following subsections present and discuss results of simulations with varying wave

inputs.

6.2.2 Body response at f = (1/2)fnP

For wave frequencies equal to half the natural pitch frequency of the body (hence far

from the optimal conditions of apparition of parametric resonance), results of simula-

tions show a relative stability in the case of small wave amplitude. Fig.6.3 shows that

for a wave amplitude of 0,2m, pitch oscillations can reach up to 7°, with a period of

oscillation of 5,3s.
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Figure 6.3: Body response for f = (1/2)fnP and wave amplitude=0.2m

48



A “double pitch oscillation” of the body can be noted and is highlighted in Fig.6.4.

The body, after pitching up to its maximal angular value, returns to its initial position

and is slightly tilted in the same direction as previously, before pitching in the opposite

direction.
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Figure 6.4: Double oscillation in the pitch response for wave amplitude=0.2m

Increasing the wave amplitude from 0.2m to 0.3m does not seem to change the heave

motion amplitude but has a strong effect on pitch motion. Fig.6.5 shows that pitch

oscillations can reach up to 40°with such wave amplitude. The motion is progressively

dampened, reaching pitch oscillations of 10°after 200s.
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Figure 6.5: Body response for f = (1/2)fnP and wave amplitude=0.3m
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For ever increasing wave amplitude, pitch motion quickly reaches large amplitude

corresponding to the body’s instability. As Fig.6.6 illustrates, increasing the wave

amplitude from 0.3m to 0.4m leads to pitch motions attaining peaks up to 700°. After

some time, the body gains back its “double oscillation” motion, as shown in Fig6.7.
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Figure 6.6: Body response for f = (1/2)fnP and wave amplitude=0.4m
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Figure 6.7: Double oscillation in the pitch response for wave amplitude=0.4m

Fig.6.8 shows the pitch motion for wave amplitude of 0,41m to 0,44m, illustrating

the increasing instability of the body when the wave amplitude is slightly increased.
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Figure 6.8: From top left to bottom right, pitch responses of the body for wave ampli-
tudes=0.41, 0.42, 0.43, 0.44m

6.2.3 Body response at f = 2fnP

At a wave frequency approaching twice the natural pitch frequency of the body, PR is

expected to be the most triggered. Results of simulations performed at this frequency

(Fig.6.9) show that parametric resonance is triggered even for relatively low wave am-

plitude. The body gains pitch momentum and rapidly becomes unstable, attaining

pitch amplitudes up to 400°, meaning rotating on itself, with an oscillating period of

2,6s.
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Figure 6.9: Body response for f = 2fnP and wave amplitude=0.1m

The results also show that heave motion is dampened when the body enters states

of high pitch motion,the heave oscillations being of lower amplitude than the waves,

thus that heave motion may be dampened in profit to pitch motion, as expected for

real practical applications of FSBDs.

6.2.4 Body response at f = 5fnP

Results of simulations operated for high wave frequency and amplitude show that, as

for the case of low wave frequency, the response for frequencies much higher than the

condition f = (1/2)fnP is more stable. Fig.6.10 illustrates theses results, highlighting

peak pitch oscillations of 45°and a dampening of heave amplitude.

It is also highlighted in this case that when the body enters a state of stable oscillations

(after 60s), its motion is operated on negative pitch values, because the incoming wave

are of too high frequency to allow it to oscillate back to positive values.
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Figure 6.10: Body response for f = 5fnP and wave amplitude=0.6m

6.3 Discussions

These results are subject to discussion. A relative stability is observed for low wave

amplitude and frequencies, and for frequencies much higher than the empirical condition

of apparition of parametric resonance.

The results of simulations with wave frequency close to twice the natural pitch frequency

highlight a strong instability in the pitch motion of the modelled buoy, correlating

with the apparition of parametric resonance, but of effect much higher than the ones

expected.

The stability of heave motion in all cases may be explained in two ways, either:

– Heave motion is converted into pitch motion by strong and unstable coupling

– The heave damping is efficient while a modelling problem occurred in the pitch

damping

A treshold condition in the wave amplitude could not be highlighted for frequencies

f = 2fnP . It seems that the body gains momentum “on its own”, due to a probable

issue in the inertia parameters.
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7 Conclusion

This work aimed not only to obtain the results for hydrodynamic simulations on a

given body, but also to give an insight on the floating buoy devices principle, their

applications as sensor buoys or wave energy harvesters, and the parametric resonance

phenomena acting on them and on many offshore structures. I hope it can be of help

for a student discovering this field of research.

Analytical as well as numerical models were looked upon, the first aiming to provide

clearance on the forces in action on a submerged body. The latter were conducted to

obtain tangible results, aiming to highlight the problems of pitch instability of such

bodies.

Future work

Any student thinking of continuing this work could improve the model by dealing

with the damping and inertia issues that seemed to arise in the results. Methods to

counteract parametric resonance in floating bodies were not studied here but exist in

Literature. The geometry of the model, chosen simple in this study, could be modified

to create more stability, since the axiMeshRotate code can theoretically generate a mesh

for any axisymmetric device. Finally, if more stable results are obtained, comparisons

with existing models, linear and nonlinear, could be of great interest.

I thank the reader to taking the time and consideration to go through this document

and hope that it was a clear and pleasant enough reading.
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8 Appendix: MatLab code Model run.m

1 %------------------------------------------

2 %Select Cylinder radius , draught and CoM

3 Radius =0.35;

4 Draught =2;

5 CoM=Draught -0.75;

6 %------------------------------------------

7 %%% Constants %%%

8 %----------------

9 % Density

10 rho = 999; %[kg/m^3]

11 % Gravity

12 g=9.81; %[m/s^2]

13 %------------------------------------------

14 %Moment of Inertia

15 m = pi*Radius ^2* Draught*rho; %Mass[kg]

16 I55=m/12*(3* Radius ^2+(0.75*2) ^2); %Inertia[kg.m^2]

17 %------------------------------------------

18 %Time

19 dt = 0.005;

20 EndTime =600;

21 Time =0:dt:EndTime;

22 %------------------------------------------

23 %Initial Positions

24 Heave1 =0;

25 Pitch1 =0;

26 %------------------------------------------

27 %%% Wave %%%

28 %-----------

29 Amplitude = 0.8; % Wave amplitude [m]

30 Frequency = 5*0.38; % Wave frequency [Hz]

31 Period =1/ Frequency;

32 wave_w= 2*pi*Frequency; %[rad/s]
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33 wave = Amplitude*sin(wave_w*Time); % Create input wave

signal[m]

34 Wave=[Time ',wave ']; %Wave vector for Simulink

35 %------------------------------------------

36 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

37 %Range of positions

38 %-----------------------------

39 DRAUGHT = -4:0.2: -0.2;

40 PITCH = -40:10:40;

41 %Initialisation

42 %------------------------------------------

43 Fe3=zeros(length(Time),length(DRAUGHT),length(PITCH));

44 Fe5=zeros(length(Time),length(DRAUGHT),length(PITCH));

45 K3=zeros(length(DRAUGHT),length(PITCH));

46 K5=zeros(length(DRAUGHT),length(PITCH));

47 invI3=zeros(length(DRAUGHT),length(PITCH));

48 invI5=zeros(length(DRAUGHT),length(PITCH));

49 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

50 %Loop through positions , load data

51 for di=1: length(DRAUGHT)

52 for Pi=1: length(PITCH)

53 Draught=DRAUGHT(di); %Submerged draught of the cylinder at

equilibrium [m]

54 Pitch=PITCH(Pi);

55 CoM=Draught +0.75; %Center of Mass depth below water

line [m]

56 Cylinder=strcat('R',num2str(Radius),'D',num2str(Draught),'
CoMz',num2str(CoM),'P',num2str(Pitch));

57 %Load Excitation force coeffcients

58 load(strcat('Nemoh_Automate/Cylinder2_ ',Cylinder ,'/Excite.
mat')); %Load excitation force co-efficients - "Fe"

59 load(strcat('Nemoh_Automate/Cylinder2_ ',Cylinder ,'/w.mat'))
; %Load corresponding frequencies - "w"

60 %Calculate excitation force

61 ind=find(w<= wave_w); %Find the excitation force co-

efficient for that frequency
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62 Fex_HeaveCoefficient = Fe(ind(end) ,3);

63 Fex_PitchCoefficient = Fe(ind(end) ,5);

64

65 Fe3(:,di ,Pi)=Amplitude *(real(Fex_HeaveCoefficient)*cos(

wave_w*Time)+imag(Fex_HeaveCoefficient)*sin(wave_w*Time))

;

66 Fe5(:,di ,Pi)=Amplitude *(real(Fex_PitchCoefficient)*cos(

wave_w*Time)+imag(Fex_PitchCoefficient)*sin(wave_w*Time))

;

67 %------------------------------------------

68 %%% Restoring %%%%

69 %-----------------

70 %Load restoring from Nemoh and make look up table

71 load(strcat('Nemoh_Automate/Cylinder2_ ',Cylinder ,'/KH.mat')
);

72

73 K3(di,Pi)=KH(3,3);

74 K5(di,Pi)=KH(5,5);

75 %------------------------------------------

76 %%% Added mass %%%

77 %-----------------

78 load(strcat('Nemoh_Automate/Cylinder2_ ',Cylinder ,'/IRF.mat'
));

79 m_infHeave = m_inf (1);

80 m_infPitch = m_inf (2);

81 %We will set up a lookup table with the inverses of mass+

added mass

82 invI_Heave = 1/(m + m_infHeave);

83 invI_Pitch = 1/(I55 + m_infPitch);

84

85 invI3(di,Pi)=invI_Heave;

86 invI5(di,Pi)=invI_Pitch;

87 end

88 end

89

90
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91 %------------------------------------------

92 %%% Creating the Lookup tables %%%

93 %---------------------------------

94 %Fe3

95 Fe3_Table=Simulink.LookupTable;

96 Fe3_Table.Table.Value=Fe3;

97 Fe3_Table.Breakpoints (3).Value=PITCH;

98 Fe3_Table.Breakpoints (2).Value=DRAUGHT +2;

99 Fe3_Table.Breakpoints (1).Value=Time;

100 Fe3_Table.StructTypeInfo.Name = 'Fe3';
101

102 %Fe5

103 Fe5_Table=Simulink.LookupTable;

104 Fe5_Table.Table.Value=Fe5;

105 Fe5_Table.Breakpoints (3).Value=PITCH;

106 Fe5_Table.Breakpoints (2).Value=DRAUGHT +2;

107 Fe5_Table.Breakpoints (1).Value=Time;

108 Fe5_Table.StructTypeInfo.Name = 'Fe5';
109

110 %K3

111 K3_Table=Simulink.LookupTable;

112 K3_Table.Table.Value=K3;

113 K3_Table.Breakpoints (1).Value=DRAUGHT +2;

114 K3_Table.Breakpoints (2).Value=PITCH;

115 K3_Table.StructTypeInfo.Name = 'K3';
116

117 %K5

118 K5_Table=Simulink.LookupTable;

119 K5_Table.Table.Value=K5;

120 K5_Table.Breakpoints (1).Value=DRAUGHT +2;

121 K5_Table.Breakpoints (2).Value=PITCH;

122 K5_Table.StructTypeInfo.Name = 'K5';
123

124 %invI3

125 invI3_Table=Simulink.LookupTable;

126 invI3_Table.Table.Value=invI3;
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127 invI3_Table.Breakpoints (1).Value=DRAUGHT +2;

128 invI3_Table.Breakpoints (2).Value=PITCH;

129 invI3_Table.StructTypeInfo.Name = 'invI3 ';
130

131 %invI5

132 invI5_Table=Simulink.LookupTable;

133 invI5_Table.Table.Value=invI5;

134 invI5_Table.Breakpoints (1).Value=DRAUGHT +2;

135 invI5_Table.Breakpoints (2).Value=PITCH;

136 invI5_Table.StructTypeInfo.Name = 'invI5 ';
137 %------------------------------------------

138 %%% Damping %%%%

139 %---------------

140 % Load the State -space parameters for the equilibrium

position (zero heave ,

141 % zero pitch)

142 load('CylinderSimulink/Heave_Rad_SS.mat');
143 load('CylinderSimulink/Pitch_Rad_SS.mat');
144 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

145 %------------------------------------------

146 %%% Simulate %%%

147 %--------------

148 sim('Model_Simulink ')
149 %------------------------------------------

150 %%% Post Process %%%

151 %-------------------

152 t=simout.time;

153 heave=simout.Data (:,1);

154 pitch=simout.Data (:,2);

155 %------------------------------------------

156 %%% Plot %%%

157 %-----------

158 figure ,

159 subplot (2,1,1), plot(tout ,heave), ylabel('Heave (m)')
160 subplot (2,1,2), plot(tout ,rad2deg(pitch)), ylabel('Pitch (

)')
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161 %plot(tout ,heave), ylabel('Heave (m)')
162 %plot(tout ,rad2deg(pitch)), ylabel('Pitch ( )')
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